Note: I have tried to include a wide range of relevant information on this topic. It will
be noted that friction values in one section do not necessarily agree with values
in another section...Please use the linked references at the bottom of the page for more detailed information.
Dry surfaces
Well lubricated surfaces
Please refer to... Surface Friction Notes
The static friction coefficient (μ) between two solid surfaces is defined as the ratio of the tangential force (F) required to produce sliding divided by the normal force between the surfaces (N)
μ = F /N
For a horizontal surface the horizontal force (F) to move a solid resting on a flat surface
F= μ x mass of solid x g.
If a body rests on an incline plane the body is prevented from sliding down because of the frictional resistance. If the angle of the plane is increased there will be an angle at which the body begins to slide down the plane. This is the angle of repose and the tangent of this angle is the same as the coefficient of friction.
When the tangential force F overcomes the frictional force between two surfaces then the surfaces
begins to slide relative to each other. In the case of a body resting on a flat surface
the body starts to move. The sliding frictional resistance is normally different to the static
frictional resistance. The coefficient of sliding friction is expressed using the same formula
as the static coefficient and is generally lower than the static coefficient of friction..
A table below shows approximate friction coefficients for various materials.
All values are approximate and are only suitable for guidance only. The sliding/lubricated values must
be used with extreme care. The only way to determine the accurate coefficient of friction between two materials is to conduct experiments.
Coefficients of friction are sensitive to atmospheric dust and humidity, oxide films, surface finish, velocity
of sliding, temperature, vibration, and extent of contamination. In many cases the degree of contamination
is perhaps the most important single variable..
Link Table of Coefficients of Friction
The friction values provided are obtained by different test methods under different ambient
conditions. This factor can also affect the results. Link Test Methods
When a cylinder rolls on a surface the force resisting motion is termed rolling friction. Rolling friction is generally considerably less than sliding friction. If W is the weight of the cylinder converted to force, or the force between the cylinder and the flat surface, and R is radius of the cylinder and F is the force required to overcome the rolling friction then.
center>F = f x W/R
f is the coefficient of rolling friction and has the same unit of length as the radius R -in the example below m (metres)
Typical values for f are listed below
Note: Values for rolling friction from various sources are not consistent and the following values
should only be used for approximate calculations.
For values of rolling bearing friction Plain Bearing Friction Values
For values of rolling bearing friction Rolling Bearing Friction Values
The coefficient of friction value is important in the design and brakes and clutches.
Various values are provided on the following linked page Clutch/Brake Materials
The coefficient of friction is required in calculating tightening torques and resulting
bolt tensile forces and stress and in calculating the resulting friction between the connected
surfaces. Below are provided a small number of values showing approximate
values of friction coefficients to be used for steel screw fastened connections.
The values are only representative values and should be confirmed against other sources of
information and preferably testing.
Coefficient of Friction for screw threads
Female Thread -Nut or Tapped Hole in steel(untreated) | ||
Male screw | Friction Coefficient (Dry) | Friction Coefficient (lub) |
Untreated Steel | 0,12 - 0,18 | 0,10 - 0,17 |
Phosphated Steel | 0,12 - 0,18 | 0,10 - 0,17 |
Cadmium Plated Steel | 0,09 - 0,14 | 0,08 -0,23 |
Galvanised steel | 0,14 - 0,23 | 0,12 - 0,2 |
Degreased steel | 0,19 - 0,25 | |
Female Thread -Nut or Tapped Hole in steel(Galvanised) | ||
Male screw | Friction Coeffient (Dry) | Friction Coefficient(Lub.) |
Untreated Steel | 0,14 - 0,2 | 0,12 - 0,18 |
Phosphated Steel | 0,14 - 0,2 | 0,12 - 0,18 |
Cadmium Plated Steel | 0,1 - 0,16 | 0,09 - 0,15 |
Galvanised steel | 0,14 - 0,25 | 0,12 - 0,2 |
Degreased steel | 0,19 - 0,25 |
Coefficient of Friction Nut/Bolt Face against Clamped surface
Clamped Surface = Steel | ||
Bolt/Nut Mat'l | Friction Coeffient (Dry) | Friction Coefficient(Lub.) |
Untreated Steel | 0,10 - 0,18 | 0,08 - 0.15 |
Phosphated Steel | 0,10 - 0,18 | 0,08 - 0,15 |
Galvanised steel | 0,10 - 0,2 | 0,09 - 0,18 |
Clamped Surface -Galvanised Steel | ||
Bolt/Nut Mat'l | Friction Coefficient (Dry) | Friction Coefficient (lub) |
Untreated Steel | 0,10 - 0,18 | 0,08 - 0,15 |
Phosphated Steel | 0,10 - 0,18 | 0,08 - 0,15 |
Galvanised steel | 0,16 - 0,22 | 0,09 - 0,18 |
Coefficient of friction between surfaces clamped by bolts /screws.
These values allow calculation of the shear force necessary to cause slip between
surfaces when clamped by bolts.
Contact Surfaces | slip coefficient |
Steel On Steel- No treatment | 0,15- 0,25 |
Steel On Cast Iron- No treatment | 0,18 - 0,3 |
Steel On Steel- Machined (Degreased) | 0,12- 0,18 |
Steel On Cast Iron- Machined (Degreased) | 0,15 - 0,25 |
Grit -Sandblasted surfaces | 0,48 - 0,55 |
The following factors are typical friction factors for power screw torque and
efficiency calculations..
1) Screw Thread Friction values (μs)
(Friction factors apply mainly for screw thread friction (μs) - can be applied to collar friction(μc)
Screw Material | Nut Material | |||
Steel | Brass | Bronze | Cast Iron | |
Steel(Dry) | 0,15-0,25 | 0,15-0,23 | 0,15-0,19 | 0,15-0,25 |
Steel (Lubricated) | 0,11-0,17 | 0,10-0,16 | 0,10-0,15 | 0,11-0,17 |
Bronze (Lubricated) | 0,08-0,12 | 0,04-0,06 | - | 0,06-0,09 |
Surface Combinations | Moving | Starting |
Soft Steel on Cast Iron | 0,12 | 0,17 |
Hard Steel on Cast Iron | 0,09 | 0,15 |
Soft Steel on Bronze | 0,08 | 0,10 |
Hard Steel on Bronze | 0,06 | 0,08 |
In mechanical engineering rotary motion can be transferred by mechanical
connections between a shaft and hub using only a tight fit.
Methods of achieving this type of connection include the engineered interference
fit, the taper lock bush and hydraulic fit bush. These keyless shaft/hub
connections all transfer torque by friction.
The coefficient of friction used for designing these types of connections is dependent
on the interface pressure, materials, surface condition, surface coatings etc.
The coefficient of friction is also dependent on the method of installation.
A different value result if the shaft is forced into the hub (force fit) compared to the value
if the assemble is completed by heating the hub or freezing the shaft prior to assembly (shrink fit)...
Various values of relevant coefficients of friction are provided below;
The manufacturers of the proprietary keyless hub/shaft systems indicate that their
products are based on a coefficient of friction of 0,12 for lightly oiled connections and 0,15
for dry assemblies. These companies can provide surface
coating fluids containing
particles to increase the coefficient of friction i.e. coefficient of friction to 0,25 to 0,3. (ref links 1 below)
The American Gear Manufactures Association (AGMA) recommends a value of between 0,12-0,15
for hydraulically expanded hubs and 0,15-0,20 for shrink or press fit hubs.
When calculated the torque to be transmitted it is generally sufficient to use the simple equation
T= μ.π.d2.L.Pc/2
d= the shaft diameter
L is the length of the interference joint.
The surface pressure Pc is calculated typically using lame's equation.
Calculators are available for obtaining the transmitted toque very conveniently.
Tribology -abc
Engineers edge - press fit calculator
There are a number of test methods for coefficient of frictions as some of which are listed below
It is clear that the different test methods provide different friction results..
Extreme care is needed in using friction coefficients and additional independent
references should be used. For any specific application the ideal method
of determining the coefficient of friction is by trials.
A short table is included above the main table to illustrate how the coefficient of
friction is affected by surface films. When a metal surface is perfectly clean
in a vacuum , the friction is much higher than the normal accepted value and seizure can
easily occur.
......The links below the tables provide further information.
Effect of oxide film etc on coefficient of static friction | |||
Material | Clean Dry | Thick Oxide Film | Sulfide Film |
Steel-Steel | 0,78 | 0,27 | 0,39 |
Copper-Copper | 1,21 | 0,76 | 0,74 |
The level of uncertainty of the information below is indicated by using steel on steel as an example. Various reference sources provide values similar to the values below.(0,74 Static- 0,42 sliding) Gieck( 7th ed) provides values of (0,15...0,30 Static - 0,10...0,30 sliding). Concise Metals Data Handbook by J.R. Davis (table 14,1) includes values (0,31 static -0,23 sliding - for steel 1032? on steel 1032?).. The same table includes a value for mild steel on mild steel of 0,62 sliding.
Material 1 | Material 2 | Coefficient Of Friction | Test method | |||
DRY | Greasy | |||||
Static | Sliding | Static | Sliding | |||
Aluminum | Aluminum | 1,05-1,35 | 1,4 | 0,3 | ||
Aluminum | Mild Steel | 0,61 | 0,47 | |||
Brake Material | Cast Iron | 0,4 | ||||
Brake Material | Cast Iron (Wet) | 0,2 | ||||
Brass | Cast Iron | 0,3 | ||||
Brick | Wood | 0,6 | ||||
Bronze | Cast Iron | 0,22 | ||||
Bronze | Steel | 0,16 | ||||
Cadmium | Cadmium | 0,5 | 0,05 | |||
Cadmium | Mild Steel | 0,46 | ||||
Cast Iron | Cast Iron | 1,1 | 0,15 | 0,07 | ||
Cast Iron | Oak | 0,49 | 0,075 | |||
Chromium | Chromium | 0,41 | 0,34 | |||
Copper | Cast Iron | 1,05 | 0,29 | |||
Copper | Copper | 1,0 | 0,08 | |||
Copper | Mild Steel | 0,53 | 0,36 | 0,18 | ||
Copper | Steel | 0,8 | SPOF | |||
Copper | Steel (304 stainless) | 0,23 | 0,21 | FOF | ||
Copper-Lead Alloy | Steel | 0,22 | - | |||
Diamond | Diamond | 0,1 | 0,05 - 0,1 | |||
Diamond | Metal | 0,1 -0,15 | 0,1 | |||
Glass | Glass | 0,9 - 1,0 | 0,4 | 0,1 - 0,6 | 0,09-0,12 | |
Glass | Metal | 0,5 - 0,7 | 0,2 - 0,3 | |||
Glass | Nickel | 0,78 | 0,56 | |||
Graphite | Graphite | 0,1 | 0,1 | |||
Graphite | Steel | 0,1 | 0,1 | |||
Graphite (In vacuum) | Graphite (In vacuum) | 0,5 - 0,8 | ||||
Hard Carbon | Hard Carbon | 0,16 | 0,12 - 0,14 | |||
Hard Carbon | Steel | 0,14 | 0,11 - 0,14 | |||
Iron | Iron | 1,0 | 0,15 - 0,2 | |||
Lead | Cast Iron | 0,43 | ||||
Lead | Steel | 1,4 | SPOF | |||
Leather | Wood | 0,3 - 0,4 | ||||
Leather | Metal(Clean) | 0,6 | 0,2 | |||
Leather | Metal(Wet) | 0,4 | ||||
Leather | Oak (Parallel grain) | 0,61 | 0,52 | |||
Magnesium | Magnesium | 0,6 | 0,08 | |||
Nickel | Nickel | 0,7-1,1 | 0,53 | 0,28 | 0,12 | |
Nickel | Mild Steel | 0,64; | 0,178 | |||
Nylon | Nylon | 0,15 - 0,25 | ||||
Oak | Oak (parallel grain) | 0,62 | 0,48 | |||
Oak | Oak (cross grain) | 0,54 | 0,32 | 0,072 | ||
Platinum | Platinum | 1,2 | 0,25 | |||
Plexiglas | Plexiglas | 0,8 | 0,8 | |||
Plexiglas | Steel | 0,4 - 0,5 | 0,4 - 0,5 | |||
Polystyrene | Polystyrene | 0,5 | 0,5 | |||
Polystyrene | Steel | 0,3-0,35 | 0,3-0,35 | |||
Polythene | Steel | 0,2 | 0,2 | |||
Rubber | Asphalt (Dry) | 0,5-0,8 | ||||
Rubber | Asphalt (Wet) | 0,25-0,75 | ||||
Rubber | Concrete (Dry) | 0,6-0,85 | ||||
Rubber | Concrete (Wet) | 0,45-0,75 | ||||
Saphire | Saphire | 0,2 | 0,2 | |||
Silver | Silver | 1,4 | 0,55 | |||
Sintered Bronze | Steel | - | 0,13 | |||
Solids | Rubber | 1,0 - 4,0 | -- | |||
Steel | Aluminium Bros | 0,45 | ||||
Steel | Brass | 0,35 | 0,19 | |||
Steel(Mild) | Brass | 0,51 | 0,44 | |||
Steel (Mild) | Cast Iron | 0,23 | 0,183 | 0,133 | ||
Steel | Cast Iron | 0,4 | 0,21 | |||
Steel | Copper Lead Alloy | 0,22 | 0,16 | 0,145 | ||
Steel (Hard) | Graphite | 0,21 | 0,09 | |||
Steel | Graphite | 0,1 | 0,1 | |||
Steel (Mild) | Lead | 0,95 | 0,95 | 0,5 | 0,3 | |
Steel (Mild) | Phos. Bros | 0,34 | 0,173 | |||
Steel | Phos Bros | 0,35 | ||||
Steel(Hard) | Polythened | 0,2 | 0,2 | |||
Steel(Hard) | Polystyrene | 0,3-0,35 | 0,3-0,35 | |||
Steel (Mild) | Steel (Mild) | 0,74 | 0,57 | 0,09-0,19 | ||
Steel (Mild) | Steel (Mild) | - | 0,62 | FOR | ||
Steel(Hard) | Steel (Hard) | 0,78 | 0,42 | 0,05 -0,11 | 0,029-,12 | |
Steel | Zinc (Plated on steel) | 0,5 | 0,45 | - | - | |
Teflon | Steel | 0,04 | 0,04 | 0,04 | ||
Teflon | Teflon | 0,04 | 0,04 | 0,04 | ||
Tin | Cast Iron | ,32 | ||||
Titanium Alloy Ti-6Al-4V(Grade 5) | Aluminium Alloy 6061-T6 | 0,41 | 0,38 | FOF | ||
Titanium Alloy Ti-6Al-4V(Grade 5) | Titanium Alloy Ti-6Al-4V(Grade 5) | 0,36 | 0,30 | FOF | ||
Titanium Alloy Ti-6Al-4V(Grade 5) | Bronze | 0,36 | 0,27 | FOF | ||
Tungsten Carbide | Tungsten Carbide | 0,2-0,25 | 0,12 | |||
Tungsten Carbide | Steel | 0,4 - 0,6 | 0,08 - 0,2 | |||
Tungsten Carbide | Copper | 0,35 | ||||
Tungsten Carbide | Iron | 0,8 | ||||
Wood | Wood(clean) | 0,25 - 0,5 | ||||
Wood | Wood (Wet) | 0,2 | ||||
Wood | Metals(Clean) | 0,2-0,6 | ||||
Wood | Metals (Wet) | 0,2 | ||||
Wood | Brick | 0,6 | ||||
Wood | Concrete | 0,62 | ||||
Zinc | Zinc | 0,6 | 0,04 | |||
Zinc | Cast Iron | 0,85 | 0,21 | |||
Material 1 | Material 2 | Coefficient Of Friction | Test method | |||
DRY | LUBRICATED | |||||
Static | Sliding | Static | Sliding |
FOR = Flat against rotating Cylinder, FOF = Flat against flat, POF = Pin on flat, IS = inclined surface,SPOF Spherical end pin on flat.
Source of above values.... The values are checked against a variety of internet and literature
sources including the links below eg Link 6-Page 16. I have referred to books including
Machinerys Handbook Eighteenth edition, Kempes Engineers Year Book 1980, Concise Metals Handbook by J.R.Davis
ASM - (Good source of referenced data) and Kurt Giecks Engineering Formulas 7th Edition..
1980, etc etc
I provide the table below as a consistent set of values for simple elements using
the simplest of test methods. It can be seen that values are generally different to the
values in the table above...
Friction tests in air at room temperature. (50% relative humidity)
Fixed Surface | Moving Block | Friction coefficient | Test Method | |
Static | Sliding | |||
Silver (Ag) | Silver (Ag) | 0,5 | Incline Plane | |
Gold(Au) | 0,53 | Incline Plane | ||
Copper(Cu) | 0,48 | Incline Plane | ||
Iron(Fe) | 0,49 | Incline Plane | ||
Aluminium(Al) | Aluminium(Al) | 0,57 | Incline Plane | |
Titanium (Ti) | 0,54 | Incline Plane | ||
Gold(au) | Silver (Ag) | 0,53 | Incline Plane | |
Gold(Au) | 0,49 | Incline Plane | ||
Cadmium(Cd) | Cadmium(Cd) | 0,79 | Incline Plane | |
Iron(Fe) | 0,52 | Incline Plane | ||
Cobalt(Co) | Cobalt(Co) | 0,56 | Incline Plane | |
Chromium(Cr) | 0,41 | Incline Plane | ||
Chromium(Cr) | Cobalt(Co) | 0,41 | Incline Plane | |
Chromium(Cr) | 0,46 | Incline Plane | ||
Copper(Cu) | Cobalt(Co) | 0,44 | Incline Plane | |
Chromium(Cr) | 0,46 | Incline Plane | ||
Copper(Cu) | 0,55 | Incline Plane | ||
Iron(Fe) | 0,50 | Incline Plane | ||
Nickel(Ni) | 0,49 | Incline Plane | ||
Zinc(Zn) | 0,56 | Incline Plane | ||
Iron(Fe) | Cobalt(Co) | 0,41 | Incline Plane | |
Chromium(Cr) | 0,48 | Incline Plane | ||
Iron(Fe) | 0,51 | Incline Plane | ||
Maganese(Mg) | 0,51 | Incline Plane | ||
Molybdenum(Mo) | 0,46 | Incline Plane | ||
Titanium(Ti) | 0,49 | Incline Plane | ||
Tungsten(W) | 0,47 | Incline Plane | ||
Zinc(Zn) | 0,55 | Incline Plane | ||
Indium(In) | Indium(In) | 1,46 | Incline Plane | |
Maganese(Mg) | Maganese(Mg) | 0,69 | Incline Plane | |
Molybdenum(Mo) | Iron(Fe) | 0,46 | Incline Plane | |
Molybdenum(Mo) | 0,44 | Incline Plane | ||
Niobium(Nb) | Niobium(Nb) | 0,46 | Incline Plane | |
Nickel(Ni) | Chromium(Cr) | 0,59 | Incline Plane | |
Nickel(Ni) | 0,50 | Incline Plane | ||
Platinum(Pt) | 0,64 | Incline Plane | ||
Lead(Pb) | Silver (Ag) | 0,73 | Incline Plane | |
Gold(Au) | 0,61 | Incline Plane | ||
Copper(Cu) | 0,55 | Incline Plane | ||
Chromium(Cr) | 0,53 | Incline Plane | ||
Iron(Fe) | 0,54 | Incline Plane | ||
Lead(Pb) | 0,90 | Incline Plane | ||
Platinum(Pt) | Nickel(Ni) | 0,64 | Incline Plane | |
Platinum(Pt) | 0,55 | Incline Plane | ||
Tin(Sn) | Iron(Fe) | 0,55 | Incline Plane | |
Tin(Sn) | 0,74 | Incline Plane | ||
Titanium(Ti) | Aluminium(Al) | 0,54 | Incline Plane | |
Titanium(Ti) | 0,55 | Flat Sliding | ||
Tungsten(W) | Copper(Cu) | 0,41 | Incline Plane | |
Iron(Fe) | 0,47 | Incline Plane | ||
Tungsten(W) | 0,51 | Incline Plane | ||
Zinc(Zn) | Copper(Cu) | 0,56 | Incline Plane | |
Iron(Fe) | 0,55 | Incline Plane | ||
Zinc(Zn) | 0,75 | Incline Plane |
Notes : Friction is lower when one of the materials is wet
Experimental results in the published literature show that at low normal stresses, as involved in
civils design,the shear stress required to slide one rock over another varies widely between experiments. This is
because at low stress rock friction is strongly dependent on surface roughness.ref. link to "Friction of Rocks" below
Material 1 | Material 2 | Friction coefficient Sliding |
Rubber | Paving | 0,7 -0,9 |
Masonry | Masonry | 0,7 -0,9 |
Masonry | Earth | 0,5 |
Earth | Earth | 0,25 -1,0 |
Concrete | Soil / Rock | 0.3 |
Concrete | Steel | 0.45 |
Brick | Moist clay | 0.33 |
Brick | Dry clay | 0.5 |
Brick | Sand | 0.4 |
Brick | Gravel | 0.6 |
Brick | Brick | 0.7 |
Brick | Rock | 0.75 |
Granite | Granite | 0.6 |
Limestone | Limestone | 0.75 |
Cement | Cement Blocks | 0.65 |
Cement | Dry Clay | 0.4 |
Cement | Wet Clay | 0.2 |
Cement | Wet Sand | 0.4 |
Cement | Dry Sand | 0.50 - 0.60 |
Cement | Dry Gravel | 0.50 - 0.60 |
Cement | Dry Rock | 0.60 - 0.70 |
Cement | Wet Rock | 0.5 |
Brick | Brick | 0.65 |
Wood | Wood | 0.48 |